从20世纪80年代开始,由于数控机床的主轴、进给系统等功能部件设计制造技术的突破,数控机床的主轴转速和进给速度均大幅度提高,在现代制造技术全面进步的推动下,切削加工技术开始进入高速切削的新阶段。目前,高速切削已在模具、航空、汽车等制造业领域得到了大量应用,产生了显著的经济效益,并正向其它应用领域拓展。
高速切削加工对刀具提出了一系列新的要求。研究表明,高速切削时,造成刀具损坏的主要原因是在切削力和切削温度作用下因机械摩擦、粘结、化学磨损、崩刃、破碎以及塑性变形等的引起的磨损和破损。因此,对高速切削刀具材料最主要的性能要求是耐热性、耐磨性、化学稳定性、抗热震性以及抗涂层破裂性能等。富耐克最新研发的超强焊接CBN刀片具有良好的耐热性、耐磨性、抗冲击性以及良好的化学稳定性。同时,富耐克还提供免费试用刀片,工程技术人员现场操作指导。这让富耐克焊接CBN刀片在汽车零部件、轧辊、齿轮轴承等行业得到广泛运用。根据国家有关专家预测,在不久的将来钨会用完殆尽,这预示着CBN刀具在高速切削领域将有巨大发展潜力和广阔应用前景。
高速切削刀具的磨损形态
高速切削时,刀具的主要磨损形态为后刀面磨损、微崩刃、边界磨损、片状剥落、前刀面月牙洼磨损、塑性变形等。
后刀面磨损是高速切削刀具最经常发生的磨损形式,可看作是刀具的正常磨损。后刀面磨损带宽度的加大会使刀具丧失切削性能,在高速切削时常采用后刀面上均匀磨损区宽度VB值作为刀具的磨损极限。
微崩刃是在刀具切削刃上产生的微小缺口,常发生在断续高速切削时,通过选用韧性好的刀具材料、减小进给量、改变刀具主偏角以增加稳定性等措施,均可减小微崩刃的发生概率。通常只要将刀具微崩刃的大小控制在磨损限度以内,刀具仍可继续切削。
边界磨损发生在刀具后刀面的刀—工接触边缘处,形状通常为一狭长沟槽,因此也称为沟槽磨损。高速切削不锈钢、高温合金(如Inconel 718)时刀具容易发生边界磨损,其原因是工件表面的加工硬化使刀—工接触边界的工件材料硬度最高。加工外圆时,刀—工接触边界的切削速度最高,因此也容易形成边界磨损。此外,用陶瓷刀具高速切削铸铁时也容易发生边界磨损。
片状剥落多发生在刀具的前、后刀面上,其原因是刀—屑或刀—工接触区的接触疲劳或热应力疲劳所致。当剥落很小时,被认为是磨损;但在很多情况下,由于疲劳裂纹源距刀具表面具有一定深度,裂纹扩展后所形成的剥落块往往大于刀具的磨损限度,一旦发生剥落,即可使刀具失效,形成剥落破损。陶瓷刀具端铣钢和铸铁时,前刀面上经常出现贝壳状剥落;涂层刀具因涂层材料与基体材料粘结强度不够也易发生剥落。
前刀面月牙洼磨损最常出现在塑性金属的高速切削加工中。塑性变形多发生在切削温度较高而刀具红硬性较差的切削条件下,超硬刀具材料在切削速度很高时也可能发生塑性变形现象。
高速切削刀具的磨损机理
在高速切削加工中,与普通切削加工类似,也存在两个摩擦副:前刀面与切屑间的摩擦副和后刀面与已加工表面间的摩擦副。其中,前者影响刀具前刀面的磨损,后者影响刀具后刀面的磨损,前、后刀面的磨损均影响刀具寿命。但与普通切削相比,高速切削时刀具与工件的接触时间减少,接触频率增加,切削过程中产生的热量更多向刀具传递,因此其磨损机理与普通切削有很大区别。
(1) 立方氮化硼(CBN)是氮化硼的致密相,聚晶立方氮化硼(PCBN)则是由CBN微粉与少量粘结相(Co,Ni或TiC、TiN、Al2O3)在高温高压下烧结而成。PCBN组织中各微小晶粒呈无序排列状态,因此PCBN硬度均匀,无方向性,具有一致的耐磨性和抗冲击性,并有很高的硬度和耐热性(1300~1500℃)、优良的化学稳定性和导热性以及低摩擦系数,而且PCBN与Fe族元素亲和性很低,因此它是高速切削黑色金属较理想的刀具材料。 PCBN的CBN含量、晶粒尺寸、粘结相等均会影响其性能:CBN含量越高,PCBN的硬度和导热性也越高;CBN晶粒尺寸越大,其抗破损性越弱,刀刃锋利性越差;采用金属材料Co、Ni作为粘结相时,PCBN有较好的韧性和导电性,采用陶瓷材料作为粘结相时则具有较好的热稳定性。
PCBN 刀具高速切削铸铁时主要发生化学磨损,导致前刀面出现月牙洼磨损。试验证明,通过改变CBN含量和刀具几何参数,以降低切削温度和减小刀—屑接触长度(时间),可减小化学磨损速率,避免前刀面月牙洼磨损。
一般认为,CBN刀具的磨损是由于切削过程中的高温、高压、切屑与前刀面间的摩擦以及工件材料中有关化学元素与之发生粘结、亲和而引起的,即其磨损机制主要包括:
①氧化磨损和相变磨损 CBN刀具高速切削时的平均切削温度可达1000~1200℃,在此高温下,即使在常压和空气气氛中也足以使CBN刀具刀尖区产生氧化、放氮甚至相变。而CBN刀具一经氧化和相变即会丧失其切削能力。
②粘结磨损 在一定压力和高温条件下,刀尖与被加工材料接触区随着切屑不断流出,双方均不断裸露出新的表面。尽管CBN对Fe族元素有较高化学惰性,但对其它元素并非如此,当条件适合时,会使CBN活性增加、惰性降低,随着与合金元素的亲和倾向不断增加,将导致出现粘结磨损。这种磨损一般表现为微粒脱落,当刀尖区温度高达 1200℃左右时,局部CBN颗粒将呈现“半熔化”状态,从而使粘结磨损大大加剧。
③摩擦磨损 工件与刀具之间的高速相对运动会使CBN刀具发生摩擦磨损。
④颗粒剥落与微崩刃。由于CBN刀具是由无数细小的CBN颗粒构成,颗粒之间呈晶界间的精细裂纹连接,且存在不均匀的内应力,因此当高温切屑流摩擦刮研CBN刀尖时,会因工件材料硬度不均或存在硬质点所产生的微冲击而造成CBN颗粒脱落或产生微崩刃。
造成CBN刀具磨损的上述多种因素并非只是独立存在、单独作用,而是相互影响、共同加剧,如氧化磨损和相变磨损必然伴随着粘结磨损,并出现摩擦磨损、剥落磨损和微崩磨损。
(2)金刚石刀具
金刚石材料可分为天然金刚石和人造金刚石。天然金刚石具有自然界物质中最高的硬度和导热系数。近年来开发的多种采用化学机理研磨金刚石刀具的方法和保护气氛钎焊金刚石技术使天然金刚石刀具的制造变得相对容易,从而使天然金刚石刀具在超精密镜面切削领域得到广泛应用。20世纪50年代实现了利用高温高压技术人工合成金刚石粉后,70年代制造出了金刚石基的切削刀具即聚晶金刚石(PCD)刀具。PCD晶粒呈无序排列状态,不具方向性,因而硬度均匀。PCD刀具具有高硬度(8000~12000HV)、高导热性、低热胀系数、高弹性模量和低摩擦系数,刀刃非常锋利,可高速切削加工各种有色金属和耐磨性极强的高性能非金属材料,如铝、铜、镁及其合金、硬质合金、纤维增塑材料、金属基复合材料、木材复合材料等。目前正在研究和开发的化学气相沉积(CVD)金刚石主要有两种形式:一种是在基体上沉积厚度小于30μm的薄层膜(CVD薄膜);另一种是沉积厚度达1mm的无衬底金刚石厚层膜(CVD厚膜)。
三种主要的金刚石刀具材料———PCD、CVD厚膜和人工合成单晶金刚石的性能比较结果为:PCD的焊接性、机械磨削性和断裂韧性最高,抗磨损性和刃口质量居中,抗腐蚀性最差;CVD厚膜的抗腐蚀性最好,机械磨削性、刃口质量、断裂韧性和抗磨损性居中,可焊接性最差;人工合成单晶金刚石的刃口质量、抗磨损性和抗腐蚀性最好,焊接性、机械磨削性和断裂韧性最差。目前,金刚石刀具是高速切削(2500~5000m/ min)铝合金较理想的刀具材料,但在高速切削钢铁及其合金时却磨损较快,其磨损机理主要是由于碳与铁具有较大亲和作用,尤其在高温下金刚石易与铁发生化学反应,因此它不适于切削钢铁及其合金材料。
高速切削刀具的磨损寿命
高速切削时,应根据加工方法和加工要求确定合理的刀具磨损寿命(极限)。影响高速切削刀具磨损寿命的因素较多,如工件材料与刀具材料的匹配、切削方式、刀具几何形状、切削用量、冷却液、振动等对刀具磨损寿命都有显著影响,其影响规律与具体切削条件有关,应通过切削试验来确定各相关因素对刀具磨损寿命的影响效应。
淬硬钢的高速切削加工
在相同切削条件下(切削进给量 0.1mm/r,切削深度0.2mm,刀具磨钝标准VB=0.2mm)分别采用P10硬质合金刀具、陶瓷刀具和CBN刀具加工AISI 4340工件材料(硬度60HRC)时,硬质合金刀具的工作寿命最低,这是由于工件材料硬度很高,导致加工时的切削力和切削温度较高,造成硬质合金刀具迅速磨损、剥离乃至断裂破损。陶瓷刀具和CBN刀具的工作寿命随着切削速度的提高而增加,当达到最大临界值后则开始降低。出现这一现象的原因可能是当切削速度增加时,刀具粘结层厚度增加,形成一层保护膜,有利于减小刀具磨损,从而提高了刀具寿命;但当切削速度进一步提高时,刀具表面层将变软,容易被工件材料中的硬质点磨耗掉,从而加剧了刀具磨损,造成刀具寿命迅速降低。